#### Regional Energy Policy: Leadership for the Nation

Gerald M. Stokes
Associate Lab Director BNL
President NY Energy Policy Institute



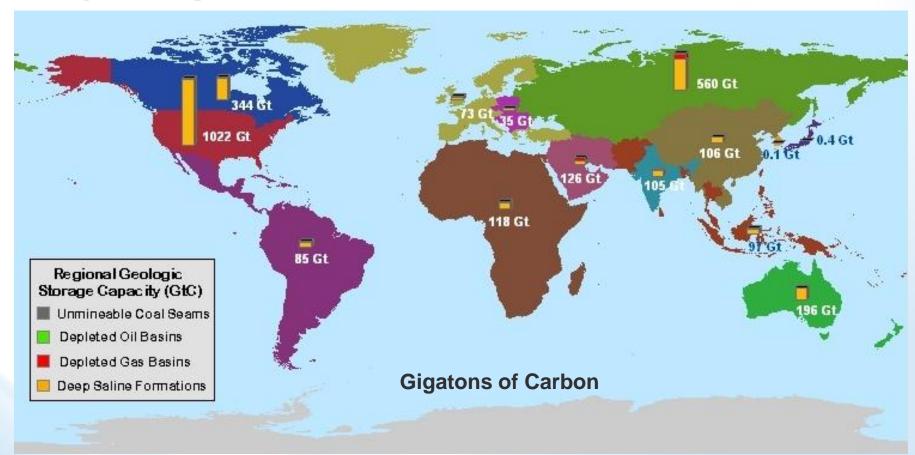
a passion for discovery



## Climate: Two answers and a path forward

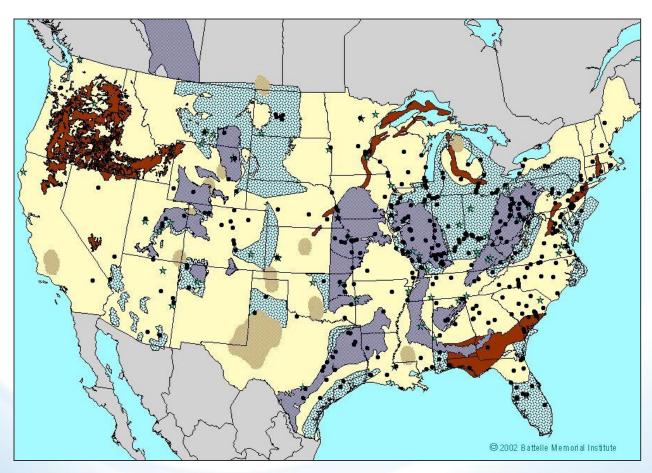
- The climate is changing and humanity is in part responsible, particularly over the last 50 years.
  - "The Detection and Attribution Problem"
- If we are to mitigate the human impact, there must be a substantial change in society's technological infrastructure, most notably in energy
  - "The Carbon Management Problem"
- Most nations are in the early stages of implementing their responses to this challenge – both mitigation and adaptation - how do they decide what to do?




#### The path forward is fragmented

- Usually discussed in terms of Kyoto, non-Kyoto, and developing nations ... not the biggest source of fragmentation.
  - Although initially the distinction between big emitters and small emitters is important
- Geography is a much bigger source of fragmentation, particularly when considering <u>implementation</u> of mitigation and adaptation strategies

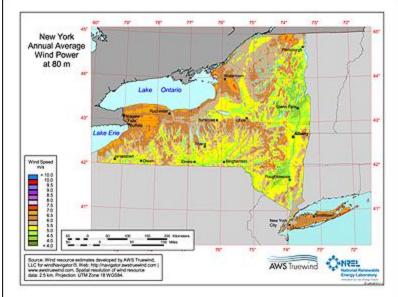


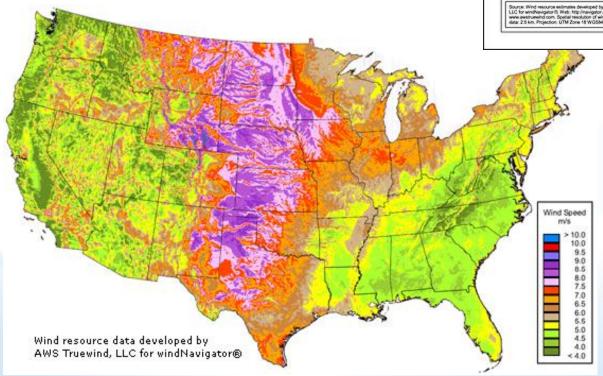

#### Why is this? The response tools are distributed non-uniformly

For example: Global CO<sub>2</sub> Storage Capacity: A Very Heterogeneous Natural Resource






## Even within countries the asset is not uniformly distributed




- There is some mismatch between capture and storage and existing power plants
- Even more so for motor vehicles.



# Further, wind, like all renewables, is regional







# Therefore GHG mitigation and adaptation have to be regional

- Energy demand: regional
- Economic influences jobs, taxes ...: regional
- Renewable Energy: Distinctly regional character
- CO2 storage: Local resource
- Externalities (air quality, renewable portfolio standards etc.): regional
- Off-sets like terrestrial sequestration: regional
- Limiting resources (like water) are regional
- Impacts and adaptation: distinctly regional
- Politics: always local



#### Therefore and not surprisingly –

### Greenhouse Gas mitigation is an active area in the states ...

- Historically in the United States environmental leadership has come from the states.
- 31 states have completed climate actions plans and planning is continuing in 4 others.
- Even with a national policy, the burden of implementation will fall to the states – in particular dealing with the economic consequences – both positive and negative – will occur at the state level.



# When you get regional – you have to ask what you are using energy for?

| Sector         | CO2 Emission   | Notes      |                                                                                                    |
|----------------|----------------|------------|----------------------------------------------------------------------------------------------------|
|                | Current (2007) | BAU (2050) |                                                                                                    |
| Residential    | 37.6           | 45.0       | 567x10 <sup>6</sup> MBTU Gas<br>154x10 <sup>6</sup> MBTU Liquid                                    |
| Commercial     | 27.2           | 39.1       | 431x10 <sup>6</sup> MBTU Gas<br>156x10 <sup>6</sup> MBTU Liquid                                    |
| Industrial     | 19.0           | 24.1       | 79x10 <sup>6</sup> MBTU Gas<br>21x10 <sup>6</sup> MBTU Liquid<br>80x10 <sup>6</sup> MBTU Coal/Coke |
| Transportation | 88.3           | 126        | 14.8x10 <sup>9</sup> VMT HDV<br>209.2x10 <sup>9</sup> VMT LDV                                      |
| Electricity    | 49.2           | 83.3       | 271,000 GWh<br>R-88.2; C-140;<br>I-36.3; T-6.2                                                     |
| Other          | 28.8           | 43.0       | SF6; NG leaks;<br>MSW; HFC                                                                         |
| Total          | 250.2          | 360.5      |                                                                                                    |

Note: 1990 emissions = 277 MMT CO2e

Making the goal 55.4 MMT CO2e



# A scenario analysis suggests several ways for NYS to meet its goal ...

| Sector      | Ultraviolet | Deep Blue | Yellow | Baseline    | Notes       |
|-------------|-------------|-----------|--------|-------------|-------------|
| Residential | 0           | 0         | 7.5    | 37.6/45.0   |             |
| Commercial  | 0           | 0         | 4.5    | 27.2/39.1   |             |
| Industrial  | 12.7        | 12.7      | 14.1   | 19.0/24.1   |             |
| Transport   | 20.1        | 20.1      | 51     | 88.3/126    |             |
| Electricity | 10          | 13        | 24     | 49.2/83.3   |             |
| Other       | 12.3        | 12.3      | 12.3   | 28.8/43.0   |             |
| Total       | 55.1        | 58.1      | 113.4  | 250.2/360.5 | Goal - 55.4 |

- Transport and Industrial (most of other) emissions get the largest share
- CCS and nuclear are key to reductions in the electric sector
- While presented as zero existing structures will be a major challenge
- We have assumed biofuels are carbon neutral

